
Poznań University of Technology

On SAT information content,
its polynomial-time solvability

and fixed code algorithms

M.Drozdowski

Research Report RA-01/23

2023

Institute of Computing Science, Piotrowo 2, 60-965 Poznań, Poland

On SAT information content,

its polynomial-time solvability
and fixed code algorithms

M.Drozdowski
Institute of Computing Science, Poznań University of Technology,

Piotrowo 2, 60-965 Poznań, Poland

Abstract

Amount of information in SAT is estimated and compared with
the amount of information in the fixed code algorithms. A remark on
SAT Kolmogorov complexity is made. It is argued that SAT can be
polynomial-time solvable, or not, depending on the solving algorithm
information content.

Keywords: computational complexity, information theory.

1 Introduction

A number of observations can be made in relation to the performance of
algorithms solving combinatorial problems and the amount of information
they hold:

• In [3] a connection between entropy of the Markov chains representing be-
havior of simulated annealing algorithms and the convergence of the expected
objective function value has been made for maximum 3-SAT problem.
• In [8] it is argued that there is a link between the fraction of problem
instances achieving certain histogram of values and the entropy of the his-
togram.
• In evolutionary optimization it is widely accepted rule of thumb that with
growing population diversity and size, the chances of producing high quality
solutions improve. Intuitively, such populations have more information.
• There is a notion of a graph hard-to-color for a certain algorithm in graph
node coloring [5, 6]. A graph that is hard-to-color is colored by the consid-
ered algorithm with more colors than the optimum. There are examples of
graphs hard-to-color for many deterministic algorithms. Random sequential
algorithm visits graph nodes in a random sequence and assigns to a node the

1

lowest feasible color. For random sequential algorithm no hard-to-color graph
exists, and hence, this algorithm cannot deterministically fail. Ominously,
this algorithm is connected to a source of randomness, that is, a source of
unlimited amount of information.

The notations used in this paper are summarized in Tab.1. Search version
of SAT problem is defined as follows:

SAT – search version
Input: sums kj, j = 1, . . . ,m, of binary variables, or their negations, chosen
over a set of n binary variables x1, . . . , xn . The input data is SAT instance I.
Let |I| denote instance I size, i.e., length of the string encoding I according
to some reasonable rule.

request: Find the assignment of values 0/1 to binary variables x1, . . . , xn,
i.e. vector x of n 0/1 values, such that the conjunction of the clauses
F (I, x) =

∏m
j=1 kj is 1. If such a vector does not exist then signal ∅.

If the binary vector x such that F (I, x) = 1 exists then we will be saying
that I is a ”yes” instance. Otherwise I is a ”no” instance. The input sums
kj will be alternatively referred to as clauses. If clauses kj comprise exactly
three variables we will say that it is a 3-SAT problem instance.

Definition 1 Fixed code algorithm is an algorithm which is encoded in lim-
ited number of immutable bits.

Thus, a fixed code algorithm does not change its code during the runtime.
Furthermore, it has no access to a source of randomness and is deterministic.
Let |A| denote the size of algorithm A code in bits.

Postulate 2 Information is not created ex nihilo by fixed code algorithms.

Postulate 3 An algorithm to solve a problem must be capable of representing
at least the same amount of information as the amount of the information
in the problem.

Definition 4 Truly random bit sequence (TRBS) is a sequence of bits, that
no bit can be computed on the basis of the other bits.

Thus, for a TRBS of length N it is not possible to compute the ith bit on
the basis of bits {1, . . . , N} \ {i}. In effect, a TRBS cannot be compressed,
and the only way to represent it is to store it in its whole entirety on N bits.

Postulate 5 Truly random bit sequences exist.

2

2 SAT Polynomial-time Solvability

SAT can be solved in O(|I|) time by referring to precomputed solutions. In
more detail, the search for a precomputed solution of I can be conducted
in a binary tree with 2|I| leaves and 2|I| − 1 internal nodes using pointers
(addresses) of length |I| + 1 to arrive at the leaves. An internal node holds
two pointers to its successors. A leaf holds an answer to a SAT solution (x
or ∅). The data-structure has size O(2|I||I|) because it has 2|I|+1 − 1 nodes
each holding at most 2(|I| + 1) bits.

The tree can be traversed top-down in O(|I|) time. Thus, SAT can be
solved in polynomial time, at least in principle, provided that an algorithm
for SAT has unlimited (precisely, exponential in |I|) amount of information.

3 Amount of Information in SAT

Let Σ+ be a set of strings encoding instances of SAT using some reasonable
encoding scheme e over alphabet Σ. An empty string ϵ ̸∈ Σ+. SAT-search is
an example of a search problem, while search problems are string relations
[4]:

Definition 6 A search problem Π is a string relation

R[Π, e] =

(a, b) :
a ∈ Σ+ is the encoding of an instance I ∈ DΠ and
b ∈ Σ+ is the encoding of a solution s ∈ SΠ(I)
under coding scheme e

 ,

where SΠ(I) is a set of solutions for instance I of Π.

Thus, SAT can be thought of as a mapping from strings a representing
instances to strings b representing solutions. Each string a is either encoding
a ”yes” instance, or not. In the former case an n-bit solution x must be
provided by the mapping. In the latter case a string representing SSAT (I) = ∅
must be provided. If the a string is not encoding any SAT instance, then such
a case can be represented in the same was as a negative answer ∅. In order
to encode each (a, b) pair of the relation representing SAT it is necessary to
have an equivalent of a graph arc from string a to its solution b. Such an arc
requires |I|+n bits of information which is at least Ω(|I|) bits. There are 2|I|

strings of some size |I|. Since it is necessary to at least distinguish whether

3

b strings represent ∅ or x, at least Ω(2|I|) bits of information are necessary
to encode SAT as string relation R[SAT, e].

An algorithm solving problem Π must represent a mapping from the in-
stances to the solutions. The mapping requires a certain number of bits to
be represented. This information must be provided in the input instance
and the algorithm to solve the problem because information is not created
ex nihilo in fixed code algorithms. Note that an algorithm solves a problem
if it provides an answer for each input instance [4]. The amount of informa-
tion in a fixed code algorithm A solving SAT and in the input instance I is
|I|+ |A| bits. Since |A| is constant and for sufficiently large |I|, the instance
and the algorithm together have less information than Ω(2|I|) bits necessary
to represent SAT as a string relation. However, it is still possible that SAT
is encoded in fewer than Ω(2|I|) bits. Hence, the above consideration does
not preclude existence of some more compact representation of SAT. In other
words, SAT could possibly be expressed in a size smaller than |I| + |A| bits,
for some fixed code algorithm A.

Theorem 7 The amount of information in SAT grows exponentially with
instance size.

Proof. Assume there are n variables and 4n clauses in 3-SAT. Let there
be 4 clauses ki1 = xa + xb + x̃i, ki2 = xa + xb + x̃i, ki3 = xa + xb + x̃i, ki4 =
xa + xb + x̃i for each i = 1, . . . , n. x̃i denotes that variable xi is with or
without negation. No valuing of xa, xb makes the four clauses simultaneously
equal 1. The four clauses may simultaneously become equal 1 only if x̃i = 1.
Satisfying formula F = k11k12k13k14 . . . kn4 depends on valuing of variables x̃i

for i = 1, . . . , n. Depending on whether xi is negated or not there can be 2n

different ways of constructing formula F , thus leading to 2n different ”yes”
instances with 2n different solutions. Variables xa, xb are chosen such that
a ̸= b and a, b ̸= i. Since there are (n − 1)(n − 2)/2 possible pairs a, b for
each i, it is possible to generate pairs a, b satisfying the above conditions for
n ≥ 3.

We are now going to calculate the number of different ”yes” instances as
a function of instance size |I|. Suppose the uniform cost criterion [1] is as-
sumed, then each number has value limited from above by constant K. The
length of the encoding of the instance data is |I| = 4n × 3 logK + logK =
12n logK+logK because it is necessary to record the number of variables in
logK bits, each binary variable induces 4 clauses of length 3 logK. Negation

4

of a variable, or lack thereof, is encoded on one bit within logK. Conse-
quently, the number of possible unique solutions is 2n = 2(|I|−logK)/(12 logK) =
2|I|/(12 logK)2−1/12, which is Ω(2d1|I|), where d1 = 1/(12 logK) > 0 is constant.

Assume logarithmic cost criterion [1], then the number of bits necessary
to record n is ⌊log n⌋+ 1, and ⌊log n⌋+ 2 bits are needed to encode the index
of a variable and its negation, or lack thereof. Length of the encoding string
is |I| = 12n(⌊log n⌋ + 2) + ⌊log n⌋ + 1 ≤ 15n log n = dn lnn, for n > 224 and
d = 15/ ln 2 ≈ 21.6404. An inverse function of (cx lnx), for some constant
c > 0, is x

c
/W (x

c
), where W is Lambert W -function [7]. Lambert W function

for big x can be approximated by W (x) = ln x−ln lnx+O(1). Given instance

size |I|, we have n ≥ |I|
d
/W (|I|

d
) ≈ |I|

d
/(ln |I|

d
−ln ln |I|

d
+O(1)) ≥ |I|

d
/(2 ln |I|

d
) ≥

|I|
d
/(2 ln |I| − 2 ln d) ≥ |I|/(2d ln |I|), for sufficiently large |I|. Note that

|I|, dn lnn, x
c
/W (x

c
) are increasing in n, x. Thus, by approximating |I| from

above we get a lower bound of n after calculating an inverse of the upper
bound of |I|. The number of possible unique solutions is 2n ≥ 2|I|/(d2 ln |I|)

where d2 = 2d. Observe that 2|I|/(d2 ln |I|) exceeds any polynomial function
of |I| for sufficiently large |I|, because for a polynomial function O(|I|k),
ln(|I|k) < |I|/(d2 ln |I|) with |I| tending to infinity.

Consider a truly random bit sequence (TRBS) of length 2n. Assume that
j = 1, . . . , 2n is one of the instances of 3-SAT constructed in the above way.
Let j[i] for i = 1, . . . , n be the i-th bit of j binary encoding. If bit j of the
TRBS is equal to 1 we set variables x̃i such that x̃i = j[i] satisfies clauses
k1i, . . . , k4i. For example, if j[i] = 1, then x̃i is written as xi. Thus, if bit j of
the TRBS is equal to 1 then a ”yes” instance is constructed. Conversely, if j =
0 then at least one variable xi in the corresponding clauses k1i, . . . , k4i is set
inconsistently, i.e., x̃i appears in k1i, . . . , k4i both with negation and without.
Hence, if bit j of the TRBS is equal to 0, the j-th instance constructed in
the above way becomes a ”no” instance. Note that in this way the TRBS of
length 2n was encoded in 3-SAT search problem. The amount of information
in 3-SAT grows at least in the order of Ω(2d1|I|) for uniform (Ω(2|I|/(d2 ln |I|)),
for logarithmic) cost criterion. 2

4 On Consequences

Note that by Theorem 7, SAT problem has amount of information that grows
at least exponentially with the size of the input instances. This information
cannot be reduced because a TRBS of size exponentially growing with in-

5

stance size is put in SAT.

Proposition 8 Fixed code algorithm is not capable of representing SAT in
polynomial time.

Proof. The amount of information that can be produced by the poly-
nomial-time algorithm running in time p(|I|), where p is a polynomial, is
|I|+ |A|+ p(|I|) log(p(|I|)), where |I|+ |A| is the instance and algorithm in-
formation, while p(|I|) log(p(|I|)) bits of information come from the progress
of time because p(|I|) values of time can be recorded on log(p(|I|)) bits. It
is still less information than comprised in SAT. 2

Observation 9 Problems in class NP have more information than their
Kolmogorov complexity.

Proof. Note that by Theorem 7 information content of SAT grows ex-
ponentially with the size of the instance because sufficiently long TRBS can
be injected in SAT. For some given number of variables n a TRBS of length
2n can be placed in SAT. However, the minimum amount of information re-
quired to represent SAT is at most log n+ |E|+ |V |, where E is an algorithm
that enumerates all input instances and all solutions according to some SAT
instance encoding scheme, while V is the fixed code algorithm capable of ver-
ifying if a given solution for I is correct. Given n, it is possible to enumerate
all strings encoding SAT. For example, SAT instance may be encoded as a
sequence of values: (n,m, k1, . . . , km). Since each variable can be used with
or without negation in clauses ki, the number of possible clauses is m ≤ 22n

which can be encoded in 2n bits. Each clause can be encoded as a sequence
of n bit pairs representing at position i = 1, . . . , n: 00i or 01i – variable xi is
absent in the current clause, 10i – variable xi is present in the current clause
as xi, 11i – variable xi is present in the current clause as xi. Thus, each
clause can be encoded in 2n bits. All clauses of the instance can be encoded
in 2nm ≤ 2n×22n bits. The whole SAT instance can be encoded as a binary
number of length log n+2n+2n×22n bits. All possible values of this number
can be enumerated by a constant information size Turing machine adding 1
to a binary-encoded number recorded on the tape. Similarly it is possible
to enumerate all 2n potential solutions of a SAT instance with n variables.
Thus, a fixed code algorithm E enumerating all input instances and all solu-
tions exists. Algorithm V exists because SAT∈NP, and all problems in NP

6

have algorithms verifying given solutions in polynomial time. Hence, SAT
as a string relation can be reconstructed by enumerating all input instances
and choosing the correct answer by use of algorithm V .

On the one hand, Kolmogorov complexity of SAT is at most log n+ |E|+
|V |. On the other hand, SAT has Ω(2n) incompressible bits. By the example
given in Theorem 7 SAT has Ω(2d1|I|) (uniform criterion) or Ω(2|I|/(d2 ln |I|))
(logarithmic criterion) incompressible bits, while Kolmogorov complexity of
SAT is log(d1|I|) + |E| + |V | (uniform) or log(|I|/(d2 ln |I|)) + |E| + |V |
(logarithmic criterion). Since by Cook’s theorem SAT is a foundation of
all NP-complete problems, the above observations can be extended to all
problems in class NP. 2

The discrepancy between these two numbers can be explained by the
existence of algorithm V and the fact that information is created by the
progress of time, the process of solution enumeration and filtering by algo-
rithm V . Informally, SAT has exponential compression efficiency and SAT
is information-inflated by solutions enumeration and verification.

Acknowledgments

I thank Joanna Berlińska, Ma lgorzta Sterna and Piotr Formanowicz for dis-
cussing with me in the earlier stages of this consideration [2].

References

[1] A.Aho, J.E.Hopcroft, J.D.Ullman, The Design and Analysis of Com-
puter Algorithms, Addison-Wesley Publishing Company, Reading MA,
1974

[2] M.Drozdowski, On polynomial-time solvability and fixed code size al-
gorithms, Research Report RA-06/16, Institute of Computing Science,
Poznań University of Technology, 2016 http://www.cs.put.poznan.

pl/mdrozdowski/rapIIn/MD-RA-6-16.pdf

[3] M.Fleischer, S.H.Jacobson, Information Theory and the Finite-Time Be-
havior of the Simulated Annealing Algorithm: Experimental Results,
INFORMS Journal on Computing 11(1), Winter 1999.

7

http://www.cs.put.poznan.pl/mdrozdowski/rapIIn/MD-RA-6-16.pdf
http://www.cs.put.poznan.pl/mdrozdowski/rapIIn/MD-RA-6-16.pdf

[4] M.R.Garey, D.S.Johnson, Computers and Intractability: A guide to the
theory of NP-completeness, Freeman, San Francisco, 1979.

[5] M.Kubale (ed.), Graph Colorings, American Mathematical Society,
Providence, Rhode Island, 2004. (I used Polish version: Optymaliza-
cja dyskretna. Modele i metody kolorowania grafów, WNT, Warszawa,
2002).

[6] K.Manuszewski, Grafy algorytmicznie trudne do kolorowania, Ph.D.
Thesis, Gdańsk University of Technology, 1997.

[7] Eric W. Weisstein, Lambert W-Function, MathWorld–A Wolfram Web
Resource. [accessed in September 2015]. http://mathworld.wolfram.
com/LambertW-Function.html

[8] D.H.Wolpert, W.G. Macready, No Free Lunch Theorems for Optimiza-
tion, IEEE Trans. on Evolutionary Computation 1(1), April 1997.

Version 3. January 1, 2024. Previous version is here.

Table 1: Summary of notations.

|A| Size of algorithm A in bits according to some reasonable encoding
rule

DΠ set of instances for problem Π
F F =

∏m
j=1 kj conjunction of clauses kj

F (I, x) value of F for instance I and bit assignment x
I instance of a problem
|I| instance size, i.e., length of the string encoding instance I

according to some reasonable encoding rule (e.g. numbers
encoded at base greater or equal 2)

kj jth clause of SAT instance, for j = 1, . . . ,m
n number of variables in the SAT problem
m number of clauses in the SAT problem
SΠ(I) set of solutions for instance I of search problem Π
xi ith variable in SAT problem, for i = 1, . . . , n
x̃i ith variable xi with or without negation
x vector of n binary values, alternatively n-bit unsigned integer

8

http://mathworld.wolfram.com/LambertW-Function.html
http://mathworld.wolfram.com/LambertW-Function.html
http://www.cs.put.poznan.pl/mdrozdowski/rapIIn/x5b-TR1-23.pdf

	Introduction
	SAT Polynomial-time Solvability
	Amount of Information in SAT
	On Consequences

